cross_validation
expanding_window_split(test_size, n_splits=5, step_size=1, eager=False)
Return train/test splits using expanding window splitter.
Split time series repeatedly into an growing training set and a fixed-size test set.
For example, given test_size = 3
, n_splits = 5
and step_size = 1
,
the train o
s and test x
s folds can be visualized as:
| o o o x x x - - - - |
| o o o o x x x - - - |
| o o o o o x x x - - |
| o o o o o o x x x - |
| o o o o o o o x x x |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test_size
|
int
|
Number of test samples for each split. |
required |
n_splits
|
int
|
Number of splits. |
5
|
step_size
|
int
|
Step size between windows. |
1
|
eager
|
bool
|
If True return DataFrames. Otherwise, return LazyFrames. |
False
|
Returns:
Name | Type | Description |
---|---|---|
splitter |
Callable[LazyFrame, Mapping[int, Tuple[LazyFrame, LazyFrame]]]
|
Function that takes a panel LazyFrame and Dict of (train, test) splits, where the key represents the split number (1,2,...,n_splits) and the value is a tuple of LazyFrames. |
sliding_window_split(test_size, n_splits=5, step_size=1, window_size=10, eager=False)
Return train/test splits using sliding window splitter.
Split time series repeatedly into a fixed-length training and test set.
For example, given test_size = 3
, n_splits = 5
, step_size = 1
and window_size=5
the train o
s and test x
s folds can be visualized as:
| o o o o o x x x - - - - |
| - o o o o o x x x - - - |
| - - o o o o o x x x - - |
| - - - o o o o o x x x - |
| - - - - o o o o o x x x |
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test_size
|
int
|
Number of test samples for each split. |
required |
n_splits
|
int
|
Number of splits. |
5
|
step_size
|
int
|
Step size between windows. |
1
|
window_size
|
int
|
Window size for training. |
10
|
eager
|
bool
|
If True return DataFrames. Otherwise, return LazyFrames. |
False
|
Returns:
Name | Type | Description |
---|---|---|
splitter |
Callable[LazyFrame, Mapping[int, Tuple[LazyFrame, LazyFrame]]]
|
Function that takes a panel LazyFrame and Dict of (train, test) splits, where the key represents the split number (1,2,...,n_splits) and the value is a tuple of LazyFrames. |
train_test_split(test_size=0.25, eager=False)
train_test_split(test_size: Union[int, float] = ..., eager: Literal[True] = ...) -> Callable[[PolarsFrame], Tuple[pl.DataFrame, pl.DataFrame]]
Return a time-ordered train set and test set given test_size
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
test_size
|
int | float
|
Number or fraction of test samples. |
0.25
|
eager
|
bool
|
If True, evaluate immediately and returns tuple of train-test |
False
|
Returns:
Name | Type | Description |
---|---|---|
splitter |
Union[EagerSplitter, LazySplitter]
|
Function that takes a panel DataFrame, or LazyFrame, and returns:
* A tuple of train / test LazyFrames, if |